Enhanced mutagenic potential of 8-oxo-7,8-dihydroguanine when present within a clustered DNA damage site.
نویسندگان
چکیده
The formation of clustered DNA damage sites is a unique feature of ionizing radiation. Recent studies have shown that the repair of lesions within clusters may be compromised, but little is understood about the mutagenic consequences of such damage sites. Using a plasmid-based method, damaged DNA containing uracil positioned at 1-5 bp separations from 8-oxo-7,8-dihydroguanine on the complementary strand was transfected into wild-type Escherichia coli or into strains lacking the DNA glycosylases Fpg and MutY. Mutation frequencies were found to be significantly higher for clustered damage sites than for single lesions. The loss of MutY gave a large relative increase in mutation frequency and a strain lacking both Fpg and MutY showed even higher mutation frequencies, up to nearly 40% of rescued plasmid. In these strains, the mutation frequency decreases with increasing spacing of the uracil from the 8-oxo-7,8-dihydroguanine site. Sequencing of plasmid DNA carrying clustered damage, following rescue from bacteria, showed that almost all of the mutations are GC-->TA transversions. The data suggest that at clustered damage sites, depending on lesion spacing, the action of Fpg is compromised and post-replication processing of lesions by MutY is the most important mechanism for protection against mutagenesis.
منابع مشابه
Increased mutability and decreased repairability of a three-lesion clustered DNA-damaged site comprised of an AP site and bi-stranded 8-oxoG lesions
PURPOSE Ionizing radiation induces DNA damage, some of which are present in clusters, defined as two or more lesions within one to two helical turns of DNA by passage of a single radiation track. These clusters are thought to contribute to the detrimental effects of radiation, in part due to the compromised repair of clustered DNA damaged sites. MATERIALS AND METHODS The repair of three-lesio...
متن کاملThe roles of specific glycosylases in determining the mutagenic consequences of clustered DNA base damage
The potential for genetic change arising from specific single types of DNA lesion has been thoroughly explored, but much less is known about the mutagenic effects of DNA lesions present in clustered damage sites. Localized clustering of damage is a hallmark of certain DNA-damaging agents, particularly ionizing radiation. We have investigated the potential of a non-mutagenic DNA base lesion, 5,6...
متن کاملProcessing of thymine glycol in a clustered DNA damage site: mutagenic or cytotoxic
Localized clustering of damage is a hallmark of certain DNA-damaging agents, particularly ionizing radiation. The potential for genetic change arising from the effects of clustered damage sites containing combinations of AP sites, 8-oxo-7,8-dihydroguanine (8-oxoG) or 5,6-dihydrothymine is high. To date clusters containing a DNA base lesion that is a strong block to replicative polymerases, have...
متن کامل8-oxo-7,8-dihydroguanine level - the DNA oxidative stress marker - recognized by fluorescence image analysis in sporadic uterine adenocarcinomas in women.
OBJECTIVES In the case of carcinogenesis in human endometrium no information exists on tissue concentration of 8-oxo-7,8-dihydroguanine, the DNA oxidative stress marker This was the main reason to undertake the investigation of this DNA modification in human uterine estrogen-dependent tissue cancers. MATERIAL AND METHODS In order to estimate the level of oxidative damage, 8-oxo-7,8-dihydrogua...
متن کامل1 Effects of base excision repair proteins on mutagenesis by 8 - oxo - 7 , 8 - dihydroguanine ( 8 -
8-Oxo-7,8-dihydroguanine (8-oxo-Gua, also known as 8-hydroxyguanine) is a major base lesion that is generated by reactive oxygen species in both the DNA and nucleotide pool. The role of DNA glycosylases, which initiate base excision repair, in the mutagenic processes of 8-oxo-Gua in DNA and 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP, also known as 8-hydroxy-2'-deoxyguanosin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 32 1 شماره
صفحات -
تاریخ انتشار 2004